机器学习之朴素贝叶斯(bayes)

监督学习、生成模型、多类分类

特点:

使用先验知识得到后验概率,由期望风险最小化得到后验概率最大化。

场景举例:情感分析、消费者分类

优点:

小规模数据集表现好,适合多分类

对于在小数据集上有显著特征的相关对象,朴素贝叶斯方法可对其进行快速分类

缺点:

需要条件独立假设,会牺牲一定准确率,分类性能不一定高

适用数据类型:

标称型数据

1. 概念

  • 条件概率(又称后验概率)

    事件A在另外一个事件B已经发生条件下的发生概率。条件概率表示为P(A|B),读作“在B条件下A的概率”。

  • 频率主义学派

    认为参数虽然未知,但却是客观存在的固定值,因此,可以通过优化似然函数等准则来确定参数值,

  • 贝叶斯学派

    认为参数是未观察到的随机变量,其本身也可有分布,因此,可假定参数服从一个先验分布,然后基于观测到的数据来计算参数的后验分布。

  • 极大似然估计

    根据数据采样来估计概率分布参数的经典方法

  • 拉普拉斯修正

    为了避免其他属性携带的信息被训练集中未出现的属性值“抹去”,在估计概率值时通常进行“平滑”。

    在先验概率中,分子加1,分母加N*1的情况。

在某个事件已经发生的情况下,为了计算出另一个相同事件发生的概率,我们使用贝叶斯定理。根据某些变量的给定值,要想计算某个结果的概率,也就是根据我们的已知知识(d)计算假设(h)为真的概率,我们这样使用贝叶斯定理:

$$P(h|d)= (P(d|h) * P(h)) / P(d)$$

其中:

$$P(h|d)$$ =后验概率。假设h的概率为真,给定数据为d,那么 P(h|d)= P(d1| h) P(d2| h)….P(dn| h) P(d)

$$P(d|h)$$ =可能性。假设 h 为真时,数据 d 的概率。

$$P(h)$$ = 类的先验概率。假设 h 的概率为真(不管数据 d 的情况)。

$$P(d) = Predictor$$ 的先验概率。数据 d 的概率(不管假设 h 的情况)。

2. 基本思路

提取所有文档中的词条并进行去重
获取文档的所有类别
计算每个类别中的文档数目
对每篇训练文档:
​ 对每个类别:
​ 如果词条出现在文档中–>增加该词条的计数值(for循环或者矩阵相加)
​ 增加所有词条的计数值(此类别下词条总数)
对每个类别:
​ 对每个词条:
​ 将该词条的数目除以总词条数目得到的条件概率(P(词条|类别))
返回该文档属于每个类别的条件概率(P(类别|文档的所有词条))

模型特点

特征与类别联合概率分布,条件独立假设

学习策略

极大似然估计,极大后验概率估计

学习的损失函数

对数似然损失

学习方法

概率计算公式,EM算法

3. 使用

3.1 一般流程

收集数据: 可以使用任何方法。
准备数据: 需要数值型或者布尔型数据。
分析数据: 有大量特征时,绘制特征作用不大,此时使用直方图效果更好。
训练算法: 计算不同的独立特征的条件概率。
测试算法: 计算错误率。
使用算法: 一个常见的朴素贝叶斯应用是文档分类。可以在任意的分类场景中使用朴素贝叶斯分类器,不一定非要是文本。

4. 代码实现

4.1 核心算法

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
def _trainNB0(trainMatrix, trainCategory):
"""
训练数据原版
:param trainMatrix: 文件单词矩阵 [[1,0,1,1,1....],[],[]...]
:param trainCategory: 文件对应的类别[0,1,1,0....],列表长度等于单词矩阵数,其中的1代表对应的文件是侮辱性文件,0代表不是侮辱性矩阵
:return:
"""
# 文件数
numTrainDocs = len(trainMatrix)
# 单词数
numWords = len(trainMatrix[0])
# 侮辱性文件的出现概率,即trainCategory中所有的1的个数,
# 代表的就是多少个侮辱性文件,与文件的总数相除就得到了侮辱性文件的出现概率
pAbusive = sum(trainCategory) / float(numTrainDocs)
# 构造单词出现次数列表
p0Num = zeros(numWords) # [0,0,0,.....]
p1Num = zeros(numWords) # [0,0,0,.....]

# 整个数据集单词出现总数
p0Denom = 0.0
p1Denom = 0.0
for i in range(numTrainDocs):
# 遍历所有的文件,如果是侮辱性文件,就计算此侮辱性文件中出现的侮辱性单词的个数
if trainCategory[i] == 1:
p1Num += trainMatrix[i] #[0,1,1,....]->[0,1,1,...]
p1Denom += sum(trainMatrix[i])
else:
# 如果不是侮辱性文件,则计算非侮辱性文件中出现的侮辱性单词的个数
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# 类别1,即侮辱性文档的[P(F1|C1),P(F2|C1),P(F3|C1),P(F4|C1),P(F5|C1)....]列表
# 即 在1类别下,每个单词出现次数的占比
p1Vect = p1Num / p1Denom# [1,2,3,5]/90->[1/90,...]
# 类别0,即正常文档的[P(F1|C0),P(F2|C0),P(F3|C0),P(F4|C0),P(F5|C0)....]列表
# 即 在0类别下,每个单词出现次数的占比
p0Vect = p0Num / p0Denom
return p0Vect, p1Vect, pAbusive


def trainNB0(trainMatrix, trainCategory):
"""
训练数据优化版本
:param trainMatrix: 文件单词矩阵
:param trainCategory: 文件对应的类别
:return:
"""
# 总文件数
numTrainDocs = len(trainMatrix)
# 总单词数
numWords = len(trainMatrix[0])
# 侮辱性文件的出现概率
pAbusive = sum(trainCategory) / float(numTrainDocs)
# 构造单词出现次数列表
# p0Num 正常的统计
# p1Num 侮辱的统计
# 避免单词列表中的任何一个单词为0,而导致最后的乘积为0,所以将每个单词的出现次数初始化为 1
p0Num = ones(numWords)#[0,0......]->[1,1,1,1,1.....]
p1Num = ones(numWords)

# 整个数据集单词出现总数,2.0根据样本/实际调查结果调整分母的值(2主要是避免分母为0,当然值可以调整)
# p0Denom 正常的统计
# p1Denom 侮辱的统计
p0Denom = 2.0
p1Denom = 2.0
for i in range(numTrainDocs):
if trainCategory[i] == 1:
# 累加辱骂词的频次
p1Num += trainMatrix[i]
# 对每篇文章的辱骂的频次 进行统计汇总
p1Denom += sum(trainMatrix[i])
else:
p0Num += trainMatrix[i]
p0Denom += sum(trainMatrix[i])
# 类别1,即侮辱性文档的[log(P(F1|C1)),log(P(F2|C1)),log(P(F3|C1)),log(P(F4|C1)),log(P(F5|C1))....]列表
p1Vect = log(p1Num / p1Denom)
# 类别0,即正常文档的[log(P(F1|C0)),log(P(F2|C0)),log(P(F3|C0)),log(P(F4|C0)),log(P(F5|C0))....]列表
p0Vect = log(p0Num / p0Denom)
return p0Vect, p1Vect, pAbusive

4.2 sklearn实现

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
# GaussianNB_高斯朴素贝叶斯
import numpy as np
X = np.array([[-1, -1], [-2, -1], [-3, -2], [1, 1], [2, 1], [3, 2]])
Y = np.array([1, 1, 1, 2, 2, 2])
from sklearn.naive_bayes import GaussianNB
clf = GaussianNB()
clf.fit(X, Y)
print (clf.predict([[-0.8, -1]]))
clf_pf = GaussianNB()
clf_pf.partial_fit(X, Y, np.unique(Y))
print (clf_pf.predict([[-0.8, -1]]))

# MultinomialNB_多项朴素贝叶斯
'''
import numpy as np
X = np.random.randint(5, size=(6, 100))
y = np.array([1, 2, 3, 4, 5, 6])
from sklearn.naive_bayes import MultinomialNB
clf = MultinomialNB()
clf.fit(X, y)
print (clf.predict(X[2:3]))
'''

# BernoulliNB_伯努利朴素贝叶斯
'''
import numpy as np
X = np.random.randint(2, size=(6, 100))
Y = np.array([1, 2, 3, 4, 4, 5])
from sklearn.naive_bayes import BernoulliNB
clf = BernoulliNB()
clf.fit(X, Y)
print (clf.predict(X[2:3]))
'''

4.3 《机器学习实战》(python3.x)

第四章 基于概率论的分类方法:朴素贝叶斯

5. 补充

  • 为什么朴素贝叶斯如此“朴素”?

    因为它假定所有的特征在数据集中的作用是同样重要和独立的。

    正如我们所知,这个假设在现实世界中是很不真实的,因此,说朴素贝叶斯真的很“朴素”。

  • 非朴素的贝叶斯方法

    1、半监督贝叶斯

    2、EM算法,含有隐藏元素

-------------感谢阅读-------------
0%